New Examples of Locally Algebraically Integrable Bodies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples of algebraically realized maps

Let G = Z4. We construct examples of G-equivariant entire rational maps from non-singular real algebraic G-varieties to Grassmannians with appropriate actions of G. These examples of strongly algebraicZ4 vector bundles facilitate a key step in the verification of Conjecture1.1 in the general cyclic group action case.

متن کامل

On algebraically integrable outer billiards

We prove that if the outer billiard map around a plane oval is algebraically integrable in a certain non-degenerate sense then the oval is an ellipse. In this note, an outer billiard table is a compact convex domain in the plane bounded by an oval (closed smooth strictly convex curve) C. Pick a point x outside of C. There are two tangent lines from x to C; choose one of them, say, the right one...

متن کامل

On the Characterization of Algebraically Integrable Plane Foliations

We give a characterization theorem for non-degenerate plane foliations of degree different from 1 having a rational first integral. Moreover, we prove that the degree r of a non-degenerate foliation as above provides the minimum number, r+ 1, of points in the projective plane through which pass infinitely many algebraic leaves of the foliation.

متن کامل

On Algebraically Integrable Differential Operators on an Elliptic Curve

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several...

متن کامل

There Are No Algebraically Integrable Ovals in Even-dimensional Spaces

We prove that there are no bounded domains with smooth boundaries in even-dimensional Euclidean spaces, such that the volumes cut off from them by affine hyperplanes depend algebraically on these hyperplanes. For convex ovals in R2, this is the Newton’s Lemma XXVIII, see [11], [14], [2], [3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Notes

سال: 2019

ISSN: 0001-4346,1573-8876

DOI: 10.1134/s0001434619110245